36 research outputs found

    Exponential random graphs as models of overlay networks

    Full text link
    In this paper, we give an analytic solution for graphs with n nodes and E edges for which the probability of obtaining a given graph G is specified in terms of the degree sequence of G. We describe how this model naturally appears in the context of load balancing in communication networks, namely Peer-to-Peer overlays. We then analyse the degree distribution of such graphs and show that the degrees are concentrated around their mean value. Finally, we derive asymptotic results on the number of edges crossing a graph cut and use these results (i)(i) to compute the graph expansion and conductance, and (ii)(ii) to analyse the graph resilience to random failures.Comment: 18 page

    UKAIRO: internet-scale bandwidth detouring

    Get PDF
    The performance of content distribution on the Internet is crucial for many services. While popular content can be delivered efficiently to users by caching it using content delivery networks, the distribution of less popular content is often constrained by the bandwidth of the Internet path between the content server and the client. Neither can influence the selected path and therefore clients may have to download content along a path that is congested or has limited capacity. We describe UKAIRO, a system that reduces Internet download times by using detour paths with higher TCP throughput. UKAIRO first discovers detour paths among an overlay network of potential detour hosts and then transparently diverts HTTP connections via these hosts to improve the throughput of clients downloading from content servers. Our evaluation shows that by performing infrequent bandwidth measurements between 50 randomly selected PlanetLab hosts, UKAIRO can identify and exploit potential detour paths that increase the median bandwidth to public Internet web servers by up to 80%

    Phase Transition of a Non-Linear Opinion Dynamics with Noisy Interactions

    Get PDF
    International audienceIn several real \emph{Multi-Agent Systems} (MAS), it has been observed that only weaker forms of\emph{metastable consensus} are achieved, in which a large majority of agents agree on some opinion while other opinions continue to be supported by a (small) minority of agents. In this work, we take a step towards the investigation of metastable consensus for complex (non-linear) \emph{opinion dynamics} by considering the famous \undecided dynamics in the binary setting, which is known to reach consensus exponentially faster than the \voter dynamics. We propose a simple form of uniform noise in which each message can change to another one with probability pp and we prove that the persistence of a \emph{metastable consensus} undergoes a \emph{phase transition} for p=16p=\frac 16. In detail, below this threshold, we prove the system reaches with high probability a metastable regime where a large majority of agents keeps supporting the same opinion for polynomial time. Moreover, this opinion turns out to be the initial majority opinion, whenever the initial bias is slightly larger than its standard deviation.On the contrary, above the threshold, we show that the information about the initial majority opinion is ``lost'' within logarithmic time even when the initial bias is maximum.Interestingly, using a simple coupling argument, we show the equivalence between our noisy model above and the model where a subset of agents behave in a \emph{stubborn} way

    Optimizing topological cascade resilience based on the structure of terrorist networks

    Get PDF
    Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades - to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas.Comment: 26 pages. v2: In review at Public Library of Science ON

    Efficient routeing in Poisson small-world networks

    No full text
    corecore